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Abstract

How can we estimate the complementarity between two treatments when assignment is

not fully random, such as in randomized experiments with imperfect compliance or in

quasi-experimental settings? The first part of this paper shows that the commonly used

two-stage least squares (2SLS) method—with instruments for each treatment and their

interaction—is often not suitable for estimating treatment interaction effects. Specifi-

cally, 2SLS requires strong assumptions about (1) treatment effect heterogeneity or (2)

types of compliers. I show that these assumptions have testable implications on first

stage patterns, and these often fail in published empirical studies on complementar-

ity. The second part of the paper proposes an alternative estimation strategy for cases

where these assumptions for 2SLS are unlikely to hold. Building on the marginal treat-

ment effect literature, this approach models potential outcomes as a linear function of

individuals’ unobserved resistance to treatment and offers a clearer connection to the

intended estimand of treatment interaction. Lastly, the paper revisits Angelucci and

Bennett (2024), an experimental study of complementarity under imperfect compli-

ance, to illustrate how the proposed diagnostics and alternative estimator can enhance

empirical analysis of interactions between two treatments.
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1 Introduction

Treatment interactions are central to many questions in social science. Is an early-

childhood intervention more effective when followed by a later intervention? Do skills beget

skills (Cunha and Heckman, 2007)? Is a combination of policies more effective at reducing

poverty than individual policies in isolation? Why is a policy effective in one context but

ineffective in another?

Researchers often test for such complementarities using instrumental variable (IV) designs

with interaction terms. Let Y (T1, T2) denote a potential outcome as a function of two distinct

binary treatments, T1 and T2. A treatment complementarity exists when the sum of the

separate treatment effects differs from the combined treatment effect on average:

E[Y (1, 0)− Y (0, 0)] + E[Y (0, 1)− Y (0, 0)] ̸= E[Y (1, 1)− Y (0, 0)]. (1)

If both treatments are randomly assigned, a valid test for complementarity is to estimate

the OLS regression

Y = β0 + β1T1 + β2T2 + βc(T1 × T2) + ϵ, (2)

and test whether βc = 0. But treatment assignment is often not random, so researchers

commonly use a two-stage least squares (2SLS) approach in which T1, T2 and T1 × T2 are

instrumented with the corresponding instruments, Z1, Z2, and Z1 ×Z2. Such IV regressions

are used in both quasi-experimental research designs1 (e.g. Johnson and Jackson 2019) and

in randomized controlled trials where compliance with treatment assignment is imperfect

(e.g. Angrist, Lang and Oreopoulos 2009; Fang et al. 2023)2.

1To examine treatment interactions using quasi-experiments, researchers have also combined other re-

search designs, such as difference-in-differences or regression discontinuity designs, into a single regression

that includes an interacted treatment variable (Neumark and Wascher, 2011; Johnson and Jackson, 2019;

Rossin-Slater and Wüst, 2020; Kerwin and Thornton, 2021; Gilligan et al., 2022; Goff et al., 2023). While

this paper does not directly address these combined designs, the concern about nonconvex weighting of

treatment effects under heterogeneity raised here may also call for a careful examination of the assumptions

underlying such approaches.
2Some experimental papers do not use 2SLS but rely on reduced-form estimates instead (Angelucci and

Bennett, 2024; Duflo, Dupas and Kremer, 2015). As explained in a later section, reduced-form estimates

can provide misleading information about treatment complementarity under imperfect compliance. Some

research questions can therefore benefit from exploring treatment complementarity beyond reduced-form

evidence, depending on the target estimand of the research question.

1



This paper shows that this common approach—2SLS with instruments for each treatment

and their interaction—can frequently yield biased estimates of treatment complementarity.

Bias can arise when two plausible conditions hold: 1) treatment effects are heterogeneous

and 2) there is imperfect compliance between the instruments and treatment assignment.

Under these conditions, the assumptions for 2SLS to identify causal treatment interactions

require unrealistic restrictions on individuals’ compliance behavior. This motivates an alter-

native design that allows for more plausible compliance patterns. I propose an alternative

estimation strategy that extends the marginal treatment effects framework to the estimation

of treatment interactions. Using Monte Carlo simulation, I show the new approach performs

better than 2SLS. I also introduce diagnostic tools that can help researchers assess when

the identification assumptions for 2SLS are likely to fail in practice. I apply the findings to

Angelucci and Bennett (2024), an experimental design that examines treatment complemen-

tarity under imperfect compliance, to illustrate how the proposed diagnostics and alternative

estimator can enhance empirical analysis of interactions between two treatments.

The first part of this paper discusses the pitfalls of using 2SLS to estimate treatment

interactions. Using a potential outcomes framework, I show that researchers must assume

either homogeneous treatment effects or impose strong restrictions on complier types for

2SLS to correctly identify treatment complementarity. A key requirement for 2SLS to be

valid is that each instrument affects only its intended treatment and has no influence on

the uptake of the other treatment, e.g., Z2 must not affect take-up of T1. Yet such patterns

of treatment compliance are implausible in many settings where treatment interaction is of

interest. For example, if families are considering whether to move to a better neighborhood

(T1) and send their child to a better school (T2), a voucher that reduces the cost of moving

(Z1) may impact the choice of schools (T2).

My framework shows that violations of these conditions generate contamination bias,

where 2SLS estimands reflect not only the intended treatment effect but also spillovers from

the other treatment effect. In this case, estimates of βc using 2SLS may capture not only the

treatment complementarity effect but also unrelated treatment effects, leading to misleading

conclusions. Notably, contamination bias for interaction terms differs from that in the general

context of multiple treatments (Goldsmith-Pinkham, Hull and Kolesár, 2024; Bhuller and

Sigstad, 2024) because the parameters of interest often involve comparisons across treatment

effects. For example, research on treatment complementarity commonly examines not only

the interaction effect itself but also the individual treatment effects and the combined effect

(which is the sum of the individual effects and the complementarity effect)1. To identify

1Alternatively, researchers often estimate the separate treatment effects and the combined effect in a
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the combined effect using the 2SLS estimates, researchers must impose an even stronger

assumption: that all 2SLS coefficients, β1,β2 and βc, are identified from the same set of

compliers. This requirement further restricts the allowable complier patterns compared to

standard multiple-treatment settings.

I develop testable implications for first-stage regressions to assess whether the assumptions

required for identifying treatment complementarity hold in empirical applications. These

diagnostics clarify how each instrument should affect only its corresponding treatment and

reveal that such ideal first-stage patterns—necessary for 2SLS to yield causal estimates—are

rarely satisfied in practice. Specifically, the assumption that each instrument affects only

its intended treatment translates into a requirement that the coefficient on the non-targeted

instrument be zero. For example, regressing T1 on Z1, Z2 and (Z1 × Z2) should yield zero

coefficients for Z2 and (Z1 × Z2). The same is true for the first-stage regressions of T2

and (T1 × T2). The common compliers assumption further requires that each relevant first-

stage coefficient be equal and positive. For example, the coefficient on Z1 in the T1 regression

should be equal to the coefficient on Z2 in the T2 regression and the coefficient on (Z1×Z2) in

the (T1×T2) regression. As I show in the replication part of my paper below, such first-stage

patterns are rarely observed in published empirical studies of treatment interactions.

Furthermore, my framework clarifies that reduced-form estimates of instrument interac-

tions can also be misleading when the same assumptions about complier types do not hold.

For example, the coefficient on (Z1 × Z2) in the reduced-form regression may not only cap-

ture the treatment complementarity effect but also unrelated treatment effects, through the

take-up of other treatments not intended by this instrument itself. This may be acceptable

when the sole interest lies in the effect of the policy instrument itself regardless of the chan-

nel. However, researchers often care about the underlying interaction between treatments

to better understand the policy effect. These misleading conclusions can arise even when

treatment effects are homogeneous. When the assumptions underpinning 2SLS are unlikely

to hold, an alternative estimation strategy may be necessary to credibly assess treatment

complementarity.

In the second part of the paper, I extend the marginal treatment effects (MTE) literature

by developing an alternative estimation strategy to 2SLS that recovers interaction effects.

This approach models potential outcomes as a linear function of individuals’ underlying re-

sistance to treatment. It uses average outcomes conditional on combinations of instruments

regression, then compute treatment complementarity by subtracting the sum of the two separate effects
from the combined effect. The argument in this paragraph applies to that specification as well, since it also
requires assuming that all 2SLS coefficients are identified from the same set of compliers.
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and treatments to estimate the linear parameters in the outcome function, where the out-

come function is modeled using two-dimensional resistance to each treatment. Based on

the extrapolated outcome function, the researcher can construct either an average treatment

interaction estimate or an estimate conditional on complier types. Although this method re-

lies on strong assumptions including linearity, it accommodates a broader and more realistic

set of compliers than the 2SLS framework and offers a clearer connection to the intended

estimand. In a simulated example where 2SLS produces biased estimates, the linear extrap-

olation approach yields estimates that are closer to the true interaction effect, provided that

the data-generating process satisfies the identifying assumptions.

In addition, this section introduces a diagnostic and a practical measure for researchers

who continue to rely on 2SLS, thereby improving the paper’s applicability to empirical

practices. The first part of this subsection discusses how to detect underlying potential

outcome heterogeneity—the core threat to 2SLS validity—by comparing outcomes among

individuals with the same treatment take-up but different instrument assignments. The

second part explores how covariates related to treatment effect heterogeneity can mitigate

bias in 2SLS estimation. Simulation results show that simply including covariates linearly

does little to reduce bias, even when those covariates are informative about treatment effect

heterogeneity. To fully exploit the role of covariates in addressing bias in 2SLS, the regression

specification should be saturated, consistent with the findings of Blandhol et al. (2022).

The final section applies the findings from the first two sections to an empirical study on

the complementarity between psychiatric treatment and economic assistance in a randomized

controlled trial with non-compliance (Angelucci and Bennett, 2024). The analysis suggests

that the coefficient comparisons in their paper may have limitations, as indicated by the first-

stage patterns. In particular, differences in coefficients may reflect variation in treatment

effects across complier groups rather than genuine complementarity between treatments. To

complement Angelucci and Bennett (2024)’s reduced-form evidence, I provide additional

analysis examining treatment complementarities using the proposed diagnostics and alter-

native estimation approach. Applying the potential-outcome-heterogeneity diagnostics and

the estimator introduced in Section 4, I find that both 2SLS and the alternative method yield

limited insights. One of the key challenges for the alternative method is the small sample

size, highlighting the empirical challenge of identifying interaction effects under imperfect

compliance.

To my knowledge, this is the first paper in economics to focus specifically on the method-

ological challenges of identifying interaction effects between treatments.2 Earlier work has

2Two related papers also address treatment interactions, one in the context of a political experiment and
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examined settings in which treatments act as substitutes by design. For example, Goldsmith-

Pinkham, Hull and Kolesár (2024) show that regressions generally fail to estimate convex

averages of heterogeneous treatment effects when multiple treatments are included alongside

covariates. Bhuller and Sigstad (2024) demonstrate the presence of contamination bias in

two-stage least squares (2SLS) estimation and identify conditions under which 2SLS recov-

ers convex averages of treatment effects. Their insights on the contamination bias present

in 2SLS overlaps with my paper, but their analysis does not discuss potential interactions

between multiple treatments. I show that the assumptions required for causal identification

of interaction effects using 2SLS can be more restrictive than those needed to estimate the

effects of each treatment separately. This is because the parameters of interest often involve

comparisons between Local Average Treatment Effects (LATEs) identified by different re-

gression coefficients. In other words, when researchers are interested in interaction effects, it

is important to recognize that each coefficient may correspond to a different set of compliers,

a concern that could be less relevant when the goal is to estimate separate effects of each

treatment. Papers with specific empirical applications such as schooling choice, college major

choices or Moving to Opportunity experiment also contain insights on how 2SLS estimands

average across complier types (Kline and Walters, 2016; Kirkeboen, Leuven and Mogstad,

2016; Mountjoy, 2022; Pinto, 2022), but none of these empirical contexts directly address

the methodological implications for estimating treatment interactions.

Second, this paper builds on the literature on instrumental variables and MTE estimation

to develop a new approach for estimating treatment interactions. While the existing research

has primarily focused on single-treatment setups (Mogstad and Torgovitsky, 2024; Brinch,

Mogstad and Wiswall, 2017; Kowalski, 2023a,b), only limited work has extended the frame-

work to multiple treatments. My contribution is to provide a use case motivating the need

to extend the framework to multiple treatments and multiple resistance parameters based

on treatment interactions. I also clarify the set of assumptions researchers should consider

when extending this method to estimate treatment interaction effects.

Third, this paper extends recent work on the interpretation of causal estimands under

treatment effect heterogeneity to the case of treatment complementarity. This literature

the other within a broader discussion of instrumental-variable identification. Blackwell (2017) shows the
limitations of 2SLS in identifying treatment interactions in a political science experiment. While sharing a
similar motivation, my analysis generalizes Blackwell’s insight by clarifying how contamination bias arises
when the treatment exclusion condition assumed in Blackwell (2017) is violated. I also develop diagnostics
and alternative estimation strategies to guide empirical researchers when such conditions are not satisfied.
Goff (2025) discusses complementarity as one application within a general framework of instrumental vari-
ables under unrestricted treatment effect heterogeneity, but Goff (2025)’s focus differs from mine in that
Goff does not focus on estimation strategies when identification fails.
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has explored the consequences of treatment effect heterogeneity for the interpretation of

2SLS estimates (Blandhol et al., 2022; Mogstad, Torgovitsky and Walters, 2021; Bhuller and

Sigstad, 2024) and difference-in-differences designs (De Chaisemartin and D’Haultfœuille,

2020; Goodman-Bacon, 2021). This paper contributes to this work by showing that re-

searchers who study treatment interactions by combining different sources of quasi-experimental

variation in a single regression may also obtain estimands that are distorted by unintended

weighting or inappropriate comparisons under treatment effect heterogeneity.

Lastly, this paper lays a foundation for empirical research on treatment complementarity

by clarifying when and why standard tools may fail, what diagnostic analyses can be used,

and what alternative methods may be more appropriate. Despite many compelling research

questions in this area, empirical work on treatment complementarity remains limited (Neu-

mark and Wascher, 2011; Johnson and Jackson, 2019; Rossin-Slater and Wüst, 2020; Kerwin

and Thornton, 2021; Gilligan et al., 2022; Goff et al., 2023). A key reason for this gap is

the lack of methodological guidance for obtaining credible estimates of treatment interac-

tions. This paper fills that gap by connecting recent methodological advances on multiple

treatments to empirical studies of treatment complementarity.

The remainder of the paper is organized as follows. Section 2 presents a motivating simu-

lation that illustrates why 2SLS can fail and why reduced-form estimates may be misleading.

Section 3 generalizes these insights and introduces first-stage diagnostics. Section 4 proposes

an alternative estimation strategy and introduces additional diagnostics and practical tools

for applied researchers using 2SLS. Section 5 applies these insights to Angelucci and Bennett

(2024), and Section 6 concludes.

2 Motivating Example

This section explains why 2SLS can fail to recover unbiased estimates of treatment com-

plementarity when treatment effects are heterogeneous. I first present a simulation in which

all individuals have homogeneous treatment effects and the econometrician recovers the com-

plementarity estimate. I then introduce heterogeneous treatment effects and show that the

econometrician fails to recover the true complementarity estimate. The section concludes by

explaining why reduced-form estimates can also be misleading in such settings.

Consider a randomized experiment with imperfect compliance designed to estimate the

following regression:

Y = β0 + β1T1 + β2T2 + βc(T1 × T2) + ϵ
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Here, Y is an outcome such as income, T1 ∈ {0, 1} indicates living in a good neighborhood,

T2 ∈ {0, 1} indicates attending a high-quality school, and (T1 × T2) ∈ {0, 1} indicates doing

both at the same time. The econometrician is interested in the effect of neighborhood

quality, the effect of school quality, and whether there is a complementarity effect. However,

ϵ may be correlated with the housing and schooling decisions. This correlation prevents the

econometrician from obtaining unbiased estimates of β1, β2, and βc using OLS.

Suppose there is a randomly assigned housing voucher Z1 ∈ {0, 1}, a randomly assigned

schooling voucher Z2 ∈ {0, 1}, and a randomly assigned voucher for both housing and school-

ing (Z1×Z2) ∈ {0, 1}. Each instrument encourages take-up of the corresponding treatment.

Assume a cross-randomization design in which assignment of Z1 and Z2 is independent:

ϵ ⊥ (Z1, Z2) and Z1 ⊥ Z2. Let Pr(Z1 = 1) = Pr(Z2 = 1) = 1/2.

Now introduce imperfect compliance represented by three distinct complier types. One

third are never takers, who never take up any treatment under any voucher assignment.

Another third are “dutiful compliers,” who take up whichever treatment they are assigned.

The remaining third are “reluctant compliers,” who take up both treatments only when

they receive both vouchers and take up no treatment otherwise. This pattern is realistic

when reluctant compliers face high costs of taking up either treatment individually, but the

joint vouchers provide sufficient incentive to adopt both. The table below summarizes these

compliance patterns.

Receives no
vouchers

(Z1 = 0, Z2 = 0)

Receives housing
voucher only

(Z1 = 1, Z2 = 0)

Receives schooling
voucher only

(Z1 = 0, Z2 = 1)

Receives both
vouchers

(Z1 = 1, Z2 = 1)

Never-takers T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 0, T2 = 0

Dutiful-compliers T1 = 0, T2 = 0 T1 = 1, T2 = 0 T1 = 0, T2 = 1 T1 = 1, T2 = 1

Reluctant-compliers T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 1, T2 = 1

Table 1: Types of compliers in the motivating simulation

Assume homogeneous treatment effects for all individuals, regardless of complier type.

Suppose growing up in a good neighborhood increases later wages by $2 and attending a

high-quality school also increases later wages by $2. Assume there is no complementarity

between neighborhood and school quality. Let the true data-generating process be:

Y = 2T1 + 2T2 + 0(T1 × T2) + ϵ

Under homogeneous effects, if the econometrician estimates 2SLS with three endogenous
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variables T1, T2, and (T1×T2) instrumented by the randomly assigned Z1, Z2, and (Z1×Z2),

the estimates recover the two individual treatment effects and the complementarity effect.

The equation below reports the mean 2SLS estimates from 1,000 Monte Carlo simulations

(each with N = 100,000). Standard deviations of the estimates are shown in parenthe-

ses:

Y = 2.00
(0.03)

T1 + 2.00
(0.03)

T2 + 0.00
(0.04)

(T1 × T2) + ϵ

Now introduce treatment effect heterogeneity. Consider the following data-generating

process:

Y = 1T1 + 1T2 + 0(T1 × T2) + ϵ if the individual is a never taker

Y = 2T1 + 2T2 + 0(T1 × T2) + ϵ if the individual is a dutiful complier

Y = 3T1 + 3T2 + 0(T1 × T2) + ϵ if the individual is a reluctant complier

In this setting, the same 2SLS specification yields biased estimates of treatment comple-

mentarity. The equation below shows the mean 2SLS estimates from 1,000 Monte Carlo

simulations (again with N = 100,000), with standard deviations in parentheses:

Y = 2.00
(0.03)

T1 + 2.00
(0.03)

T2 + 1.00
(0.04)

(T1 × T2) + ϵ

Let ∆1 denote the effect of the first treatment, ∆2 the effect of the second treatment,

and ∆c the complementarity effect. Even though ∆c equals zero for every individual, the

2SLS estimate of the complementarity effect is positive. Denoting dutiful compliers by

DC and reluctant compliers by RC, the expected value of the third 2SLS coefficient is the

following. This expression follows directly from the general 2SLS expectation formula derived

in Section 3.1, after substituting in the complier types assumed in this simulation:

E[β̂c] = E[∆c | DC,RC] + 1
2

(
E[∆1 | RC]− E[∆1 | DC]

)
+ 1

2

(
E[∆2 | RC]− E[∆2 | DC]

)
Intuitively, the biased interaction coefficient arises because reluctant compliers respond

only when both vouchers are offered, which induces correlation between the second instru-

ment and the first treatment (and vice versa). Their first- and second-treatment effects are

therefore misattributed to the interaction term, generating a spurious estimate of comple-

mentarity. This issue does not arise in standard IV settings with a single treatment but
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emerges in multi-treatment settings where the take-up of one treatment can depend on the

assignment of the other instrument.

This example illustrates that the 2SLS estimand for treatment interaction reflects not

only the intended interaction effect but also differences in the main effects across complier

types. Note that the three complier patterns satisfy standard IV compliance assumptions.

Each voucher increases take-up of its corresponding treatment for all complier types, and

there are no defiers. This setting therefore calls for a more careful account of the complier

structure when studying treatment interactions.

Finally, I demonstrate that reduced-form estimates can also be misleading under the same

data-generating process. The following equations report the mean reduced-form estimates

from 1,000 Monte Carlo simulations (each with N = 100,000) for both the homogeneous-

and heterogeneous-effects settings. Standard deviations are shown in parentheses:

Homogeneous Effect setting: Y = 0.67
(0.01)

Z1 + 0.67
(0.01)

Z2 + 1.33
(0.02)

(Z1 × Z2)

Heterogeneous Effect setting: Y = 0.67
(0.01)

Z1 + 0.67
(0.01)

Z2 + 2.00
(0.02)

(Z1 × Z2)

The third coefficient in the reduced-form specification has the following expectation, where

dutiful compliers are denoted by DC and reluctant compliers by RC:

E[γ̂c] = E[∆c | DC,RC] · Pr(DC,RC) + E[∆1 | RC] · Pr(RC) + E[∆2 | RC] · Pr(RC)

This expression shows that the treatment effects associated with reluctant compliers spill

over into the interaction coefficient in the reduced-form specification as well. This hap-

pens because the reluctant complier’s take-up of either treatment depends on receiving both

vouchers, causing their single-treatment effects to load onto the instrument interaction term.

While this may be acceptable when the goal is to estimate the effect of the policy instrument

itself—regardless of the behavioral channel—it becomes problematic when the estimand of

interest is the causal effect of treatment take-up. In such cases, reduced-form estimates are

not informative about the underlying treatment complementarity, even under homogeneous

treatment effects, unless types such as reluctant compliers can be credibly ruled out.
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3 General Problem

This section formalizes the challenges of estimating treatment complementarity with

2SLS. Section 3.1 sets up the problem and characterizes the 2SLS estimands. Section 3.2

provides the corresponding results for reduced form. Section 3.3 derives testable implications

for the first-stage regressions and shows that they are often violated in empirical applica-

tions.

3.1 2SLS Estimation

There are four possible treatments, (T1, T2) ∈ (0, 0), (1, 0), (0, 1), (1, 1), and individuals

can be assigned to four possible instruments, (Z1, Z2) ∈ (0, 0), (1, 0), (0, 1), (1, 1). This sec-

tion provides an interpretation of the 2SLS estimate from the following equation with Z1,

Z2, and (Z1 × Z2) as instruments:

Y = β0 + β1T1 + β2T2 + βc(T1 × T2) + ϵ (3)

The 2SLS estimation is characterized by the moment conditions

E[ϵ] = E[ϵZ1] = E[ϵZ2] = E[ϵZ1Z2] = 0 (4)

I denote the potential outcome as Y (T1, T2, Z1, Z2) or Y (T1, T2) and the potential treat-

ment choice as T1(Z1, Z2) and T2(Z1, Z2), which take the value 1 if the individual takes

up treatment Tk when given the instrument pair (Z1, Z2). Note that (T1 × T2)(Z1, Z2) ≡
T1(Z1, Z2)× T2(Z1, Z2). I maintain the following assumptions throughout the paper.

Assumption 1. (Exclusion restriction). Y (T1, T2, Z1, Z2) = Y (T1, T2) for all values of

Z1, Z2, T1, and T2.

The first assumption implies that the instruments affect the outcome only through their

influence on the treatment take-up.

Assumption 2. (Independence). (Y (T1, T2), T1(Z1, Z2), T2(Z1, Z2)) ⊥ (Z1, Z2), and Z1 ⊥
Z2.

The second assumption is that the instruments are as good as randomly assigned and thus

uncorrelated with potential outcomes and potential choices. In addition, the two instruments

are assumed to be assigned independently of each other, which is the case in cross-randomized

experiments.
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Assumption 3. (Relevance).

E
(
[1 Z1 Z2 (Z1 × Z2)]

T [1 T1 T2 (T1 × T2)]
)
has full rank.

The third assumption ensures that the instruments provide sufficient variation to identify

the treatment effects.

Assumption 4. (Monotonicity). T1(1, 0) ≥ T1(0, 0), T2(0, 1) ≥ T2(0, 0), and (T1 ×
T2)(1, 1) ≥ (T1 × T2)(0, 0).

The fourth assumption ensures that each instrument does not discourage take up of

the corresponding treatment, which parallels the commonly assumed “No defiers” assump-

tion in the standard binary treatment and binary instrument setup (Imbens and Angrist,

1994).

Note that the simulation example in the previous section also satisfies Assumptions 1–4

yet does not achieve identification of treatment complementarity. The following proposition

formalizes this result.

Proposition 1. Suppose Assumptions 1– 4 hold. Solving the moment condition equations

for β1, β2, and βc shows that each coefficient is a linear combination of all three treatment

effects:

β1 = E[w1
1∆1 + w1

2∆2 + w1
c∆c],

β2 = E[w2
1∆1 + w2

2∆2 + w2
c∆c],

βc = E[wc
1∆1 + wc

2∆2 + wc
c∆c],

where ∆ denotes the individual-level treatment effects:

(i) ∆1: the effect of taking up the first treatment, Y (1, 0)− Y (0, 0),

(ii) ∆2: the effect of taking up the second treatment, Y (0, 1)− Y (0, 0),

(iii) ∆c: the complementarity effect, [Y (1, 1)− Y (1, 0)]− [Y (0, 1)− Y (0, 0)].

Furthermore, the own-weights satisfy E[w1
1] = E[w2

2] = E[wc
c] = 1, and all cross-weights

satisfy E[w1
2] = E[w1

c ] = E[w2
1] = E[w2

c ] = E[wc
1] = E[wc

2] = 0. All weights depend on

potential treatment choices.

Proof: See Appendix A.1.

Proposition 1 implies that with homogeneous treatment effects each 2SLS coefficient
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equals its target ∆. Under heterogeneity, however, individual weights can be negative

or exceed one—even though their expectations are 1 (own-weights) or 0 (cross-weights).

The extent of this contamination is determined by the covariance between the off-diagonal

weights wj
i and the corresponding treatment effects: because E[wj

i ] = 0, we have E[wj
i∆i] =

cov(wj
i ,∆i). If potential choices are independent of treatment effects, contamination may

not be of a concern even with some heterogeneity.

Consequently, Assumptions 1–4 are not sufficient to guarantee a causal interpretation of

the 2SLS coefficients in (3). For example, β1 generally reflects not only ∆1 but also ∆2

and ∆c. To restore a causal interpretation, a stronger monotonicity assumption is needed.

Bhuller and Sigstad (2024) propose such a condition (their Assumption 4) in a general

multiple-treatments and instruments setting; here, I adapt it to treatment complementarity

setup in a way that is more directly tied to potential treatment choices (instead of residualized

predicted treatments), which helps clarify how compliance behavior drives the contamination

in 2SLS.

Assumption 5. (No cross effects). For Z1 ∈ {0, 1} and Z2 ∈ {0, 1},

T1(Z1, 1) = T1(Z1, 0), T2(1, Z2) = T2(0, Z2),

and

(T1 × T2)(1, 0) = (T1 × T2)(0, 1) = (T1 × T2)(0, 0).

The first part of Assumption 5 requires that each instrument affects only its intended

treatment and not the other. The second part requires that joint take-up is encouraged

only when both instruments are received; receiving a single instrument has no effect on joint

take-up. The “reluctant complier” type from the previous example violates the first part of

Assumption 5, since T1(1, 1) ̸= T1(1, 0) and T2(1, 1) ̸= T2(0, 1) for such individuals.

Assumption 5, together with Assumptions 1–4, ensures that each 2SLS coefficient is a con-

vexly weighted average of its corresponding treatment effect. These restrictions, however,

substantially limit permissible compliance behavior. With no restrictions, the 4 instrument

combinations and 4 treatment combinations imply 44 = 256 possible complier types. Impos-

ing Assumption 4 (monotonicity) rules out discouragement patterns, reducing the set from

256 to 132 types, and Assumption 5 (No cross effects) further narrows the admissible set

to just seven types. These seven types—precisely those consistent with Assumptions 4 and

5—are listed below.
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Type Z00 Z10 Z01 Z11

1. Never-taker T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 0, T2 = 0
2. T2-complier T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 0, T2 = 1 T1 = 0, T2 = 1
3. T1-complier T1 = 0, T2 = 0 T1 = 1, T2 = 0 T1 = 0, T2 = 0 T1 = 1, T2 = 0
4. Dutiful-complier T1 = 0, T2 = 0 T1 = 1, T2 = 0 T1 = 0, T2 = 1 T1 = 1, T2 = 1
5. Always-T1-taker T1 = 1, T2 = 0 T1 = 1, T2 = 0 T1 = 1, T2 = 0 T1 = 1, T2 = 0
6. Always-T2-taker T1 = 0, T2 = 1 T1 = 0, T2 = 1 T1 = 0, T2 = 1 T1 = 0, T2 = 1
7. Always-both-taker T1 = 1, T2 = 1 T1 = 1, T2 = 1 T1 = 1, T2 = 1 T1 = 1, T2 = 1

Table 2: Admissible complier types under Assumptions 1–5.

Proposition 2 formalizes that valid 2SLS estimation of treatment complementarity (i.e., a

causal interpretation of each coefficient in (3)) is possible if only these seven complier types

are allowed, which is equivalent to imposing Assumptions 4 (monotonicity) and 5 (No cross

effects).

Proposition 2. Suppose Assumptions 1–5 hold. Then 2SLS coefficients have a causal in-

terpretation and identify the following:

β1 = E[∆1 | T1 complier or Dutiful complier]

β2 = E[∆2 | T2 complier or Dutiful complier]

βc = E[∆c | Dutiful complier].

Proof: See Appendix A.2.

Proposition 2 highlights that even after eliminating contamination bias, the 2SLS coeffi-

cients pertain to different complier groups. This complicates common practices of summing

or comparing coefficients. For instance, the “combined effect,” E[∆1+∆2+∆c] = E[Y (1, 1)−
Y (0, 0)], is often reported in the complementarity literature, but the sum β1+β2+βc aggre-

gates effects across distinct complier populations and therefore does not equal the combined

effect under heterogeneous treatment effects. Additional restrictions on complier types are

thus required—namely, ruling out the T2-complier and T1-complier types in Table 2.
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Type Z00 Z10 Z01 Z11

1. Never-taker T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 0, T2 = 0
2. Dutiful-complier T1 = 0, T2 = 0 T1 = 1, T2 = 0 T1 = 0, T2 = 1 T1 = 1, T2 = 1
3. Always-T1-taker T1 = 1, T2 = 0 T1 = 1, T2 = 0 T1 = 1, T2 = 0 T1 = 1, T2 = 0
4. Always-T2-taker T1 = 0, T2 = 1 T1 = 0, T2 = 1 T1 = 0, T2 = 1 T1 = 0, T2 = 1
5. Always-both-taker T1 = 1, T2 = 1 T1 = 1, T2 = 1 T1 = 1, T2 = 1 T1 = 1, T2 = 1

Table 3: Admissible complier types under Assumptions 1–5, and to ensure 2SLS coefficients
reflect the same complier group.

Corollary 1. Suppose Assumptions 1–5 hold and we further rule out T2-complier and T1

complier types. Then 2SLS coefficients have a causal interpretation and all coefficients reflect

the same underlying complier group, and:

β1 = E[∆1 | Dutiful complier]

β2 = E[∆2 | Dutiful complier]

βc = E[∆c | Dutiful complier].

The same logic applies when estimating treatment complementarity via the mutually

exclusive treatment-arm specification common in experimental studies:

Y = β′
0 + β′

1 · 1[T1 = 1, T2 = 0] + β′
2 · 1[T1 = 0, T2 = 1] + β′

3 · 1[T1 = 1, T2 = 1] + ϵ, (5)

and testing β′
1+ β′

2 = β′
3 for complementarity. Corollary 2 shows that the same assumptions

are required for this specification to identify the causal estimands of interest.

Corollary 2. Suppose Assumptions 1–5 hold and we further rule out T2-complier and T1

complier types. Then the 2SLS coefficients in (5) have a causal interpretation, all coefficients

reflect the same underlying complier group, and:

β′
1 = E[∆1 | Dutiful complier]

β′
2 = E[∆2 | Dutiful complier]

β′
3 = E[∆1 +∆2 +∆c | Dutiful complier]

β′
3 − β′

2 − β′
1 = E[∆c | Dutiful complier]
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3.2 Reduced Form Estimation

Researchers often regress outcomes directly on the randomized instruments, which is

commonly referred to as reduced-form estimation. However, without restrictions on the

underlying complier types, reduced-form estimates can provide misleading evidence of treat-

ment complementarity, as the simulation example in the previous section illustrates. The

next proposition formalizes this point.

Proposition 3. Suppose Assumptions 1–4 hold (as in Proposition 1). The reduced-form

estimates from

Y = γ0 + γ1Z1 + γ2Z2 + γc(Z1 × Z2) + ϵ (6)

are linear combinations of all three treatment effects:

γ1 = E[δ11∆1 + δ12∆2 + δ1c∆c]

γ2 = E[δ21∆1 + δ22∆2 + δ2c∆c]

γc = E[δc1∆1 + δc2∆2 + δcc∆c].

Proof: See Appendix A.3.

These expressions show that each reduced-form coefficient is a linear combination of the

three individual-level effects (∆1,∆2,∆c) with weights determined by potential treatment

choices. Therefore, reduced-form estimates may not be informative if researchers’ interests

are in ∆. Additional restrictions on potential choices—such as Assumption 5 (No cross

effects)—are required to eliminate other ∆ terms.

Next, I state the reduced-form analogue of Proposition 2.

Proposition 4. Suppose Assumptions 1–5 hold. Then the reduced-form coefficients identify:

γ1 = Pr(T1-complier or Dutiful complier) · E[∆1 | T1-complier or Dutiful complier],

γ2 = Pr(T2-complier or Dutiful complier) · E[∆2 | T2-complier or Dutiful complier],

γc = Pr(Dutiful complier) · E[∆c | Dutiful complier].

Proof: See Appendix A.4.

Proposition 4 shows that the common practice of combining or comparing reduced-form

coefficients can be misleading even when seven complier types are assumed: each coeffi-

cient pertains to different compliers and is multiplied by the corresponding complier prob-

ability. Consequently, coefficient comparisons do not distinguish between variation in the
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treatment effects (∆) and differences in the composition of complier types (Pr(type)). To

facilitate meaningful comparisons or combinations of coefficients, a stronger assumption is

required.

Corollary 3. Suppose Assumptions 1–5 hold and we further rule out T2-complier and T1

complier types. Then all reduced-form coefficients reflect the same underlying complier group,

and identify:

γ1 = Pr(Dutiful complier) · E[∆1 | Dutiful complier],

γ2 = Pr(Dutiful complier) · E[∆2 | Dutiful complier],

γc = Pr(Dutiful complier) · E[∆c | Dutiful complier].

The same logic applies to the mutually exclusive treatment-arm specification common in

experimental studies:

Y = γ′
0 + γ′

1 · 1[Z1 = 1, Z2 = 0] + γ′
2 · 1[Z1 = 0, Z2 = 1] + γ′

3 · 1[Z1 = 1, Z2 = 1] + ϵ, (7)

where researchers test γ′
1+γ′

2 = γ′
3 for complementarity. The same assumptions are required

for this specification to identify the causal estimand of interest.

Corollary 4. Suppose Assumptions 1–5 hold and we further rule out T2-complier and T1

complier types. Then the reduced-form coefficients in (7) reflect the same underlying complier

group and identify:

γ′
1 = Pr(Dutiful complier) · E[∆1 | Dutiful complier]

γ′
2 = Pr(Dutiful complier) · E[∆2 | Dutiful complier]

γ′
3 = Pr(Dutiful complier) · E[∆1 +∆2 +∆c | Dutiful complier]

γ′
3 − γ′

2 − γ′
1 = Pr(Dutiful complier) · E[∆c | Dutiful complier]

3.3 First stage regressions

The restrictions on complier behaviors have testable implications for the first-stage re-

gressions. The first-stage regressions corresponding to the 2SLS estimation of equation (3)
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are:

T1 = α0
1 + α1

1Z1 + α2
1Z2 + αc

1(Z1 × Z2) + η1

T2 = α0
2 + α1

2Z1 + α2
2Z2 + αc

2(Z1 × Z2) + η2

(T1 × T2) = α0
c + α1

cZ1 + α2
cZ2 + αc

c(Z1 × Z2) + ηc

If Assumptions 1–5 hold, ensuring that each 2SLS coefficient has a causal interpretation,

then each first-stage coefficient corresponds to the proportion of compliers affected by the

relevant instrument, as shown below.

Proposition 5. Suppose Assumptions 1–5 hold. Then:

α1
1 = Pr(T1-complier or Dutiful complier), α2

1 = 0, αc
1 = 0;

α1
2 = 0, α2

2 = Pr(T2-complier or Dutiful complier), αc
2 = 0;

α1
c = 0, α2

c = 0, αc
c = Pr(Dutiful complier).

Proof: See Appendix A.5.

Proposition 5 implies that, under Assumptions 1–5, all cross-coefficients in the first-stage

regressions must be zero. Any nonzero estimate of α2
1, α

1
2, α

c
1, α

c
2, α

1
c , or α

2
c therefore provides

direct evidence that Assumption 5 (No cross effects) is violated.

Proposition 6. Suppose Assumptions 1–5 hold. For the 2SLS coefficients to have a causal

interpretation and reflect the same set of compliers, each first-stage coefficient must corre-

spond to the following complier proportions:

α1
1 = Pr(Dutiful complier), α2

1 = 0, αc
1 = 0;

α1
2 = 0, α2

2 = Pr(Dutiful complier), αc
2 = 0;

α1
c = 0, α2

c = 0, αc
c = Pr(Dutiful complier).

Proof: See Appendix A.5.

Proposition 6 implies that, when the 2SLS coefficients are to be interpreted as causal

effects for the same complier population, two conditions must hold: (i) all cross-coefficients

in the first-stage regressions must be zero, and (ii) the relevant coefficients must be identical

across the three first-stage equations. That is, the instrument’s effect on T1, T2, and (T1×T2)
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must be driven by the same complier group—Dutiful compliers.

In practice, these stringent implications are rarely satisfied. For instance, Angrist, Lang

and Oreopoulos (2009) examine an experiment that randomly assigns students to two ed-

ucational inputs. Replicating their first-stage regressions reveals that Assumption 5 (No

cross effects) is not supported by the data. Another example by Angelucci and Bennett

(2024), who cross-randomize psychiatric treatment and economic assistance, find first-stage

patterns consistent with Assumption 5, but not with the additional restrictions required for

each coefficient to reflect a common underlying complier group. Consequently, comparing

2SLS coefficients (or reduced-form coefficients) may yield misleading evidence of treatment

complementarity when treatment effects are heterogeneous.

(1) (2) (3)
T1 T2 T1T2

Z1 0.60** 0.00 -0.00
(0.02) (0.02) (0.01)

Z2 0.00 0.91** -0.00
(0.02) (0.02) (0.01)

Z1Z2 0.23** -0.08** 0.84**
(0.04) (0.03) (0.02)

cons -0.00 -0.00 0.00
(0.01) (0.01) (0.00)

N 837 837 837

Standard errors in parentheses

+ p < 0.10, * p < 0.05, ** p < 0.01

(a) Angrist, Lang and Oreopoulos (2009)

(1) (2) (3)
T1 T2 T1T2

Z1 0.46** 0.00 -0.00
(0.03) (0.03) (0.02)

Z2 0.00 0.71** -0.00
(0.03) (0.03) (0.02)

Z1Z2 -0.03 -0.05 0.31**
(0.04) (0.04) (0.03)

cons -0.00 -0.00 0.00
(0.02) (0.01) (0.01)

N 1000 1000 1000

Standard errors in parentheses

+ p < 0.10, * p < 0.05, ** p < 0.01

(b) Angelucci and Bennett (2024)

Table 4: First-stage estimates from two cross-randomized experimental studies.

4 Solution

In this section, I propose an alternative estimation strategy for settings in which As-

sumptions 1 through 4 hold but Assumption 5 is unlikely to be satisfied, while allowing for

a limited form of treatment effect heterogeneity. I extend a linear extrapolation approach

in the marginal treatment effects (MTE) framework (Brinch, Mogstad and Wiswall, 2017;

Kowalski, 2023a,b) to a setting with two jointly chosen treatments. Using simulated data,

I show that this method accommodates a richer set of complier types and performs better

than two stage least squares (2SLS), while remaining more interpretable. Its limitations
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are that it still requires some restrictions on choice behavior and it assumes linearity in the

potential outcome function.

4.1 Assumptions on Choice model and Potential Outcomes

Let

V1 = µ1(Z1, Z2)− ε1,

V2 = µ2(Z1, Z2)− ε2,

where V1 is the latent utility of taking the first treatment and V2 is the latent utility of

taking the second treatment. Normalize the utility of taking neither treatment to zero, V0 =

0. Assume separability between the observed components µ1, µ2 (suppressing observable

covariates X) and the unobserved resistance to treatments ε1, ε2, as is standard in the MTE

literature (Carneiro and Lee, 2009; Kowalski, 2023a,b). Assume further that the utility of

taking both treatments is separable in V1 and V2, which yields the selection rule:

1{T1 = 0, T2 = 0} = 1{V1 < 0, V2 < 0},

1{T1 = 1, T2 = 0} = 1{V1 > 0, V2 < 0},

1{T1 = 0, T2 = 1} = 1{V1 < 0, V2 > 0},

1{T1 = 1, T2 = 1} = 1{V1 > 0, V2 > 0}.

I now introduce two additional assumptions on the choice model that facilitate the linear

extrapolation approach, provided that the standard IV Assumptions 1 through 4 and the

choice rules outlined above hold.

Assumption 6. µ1(Z1, Z2) is weakly increasing in Z1 and in Z1Z2, and µ2(Z1, Z2) is weakly

increasing in Z2 and in Z1Z2.

Assumption 7. ε1 ⊥ ε2.

Assumptions 6 and 7 imply a richer, 16-type compliers (See Table 5), including the “re-

luctant compliers” from the previous simulation section. This expands the set of admissible

choice behaviors relative to Assumption 5, which was required to give 2SLS a causal inter-

pretation (See Table 2 for comparison). Therefore, the linear extrapolation approach can

accommodate behaviors that violate Assumption 5 (No cross effects), at the cost of imposing

functional structure on both the choice process and the potential outcome function.
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Type Z00 Z10 Z01 Z11

1. Never-taker T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 0, T2 = 0
2. [Type 2] T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 0, T2 = 1
3. [Type 3] T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 1, T2 = 0
4. Reluctant-complier T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 1, T2 = 1
5. T2-complier T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 0, T2 = 1 T1 = 0, T2 = 1
6. [Type 6] T1 = 0, T2 = 0 T1 = 0, T2 = 0 T1 = 0, T2 = 1 T1 = 1, T2 = 1
7. T1-complier T1 = 0, T2 = 0 T1 = 1, T2 = 0 T1 = 0, T2 = 0 T1 = 1, T2 = 0
8. [Type 8] T1 = 0, T2 = 0 T1 = 1, T2 = 0 T1 = 0, T2 = 0 T1 = 1, T2 = 1
9. Dutiful-complier T1 = 0, T2 = 0 T1 = 1, T2 = 0 T1 = 0, T2 = 1 T1 = 1, T2 = 1
10. Always-T1-taker T1 = 1, T2 = 0 T1 = 1, T2 = 0 T1 = 1, T2 = 0 T1 = 1, T2 = 0
11. [Type 11] T1 = 1, T2 = 0 T1 = 1, T2 = 0 T1 = 1, T2 = 0 T1 = 1, T2 = 1
12. [Type 12] T1 = 1, T2 = 0 T1 = 1, T2 = 0 T1 = 1, T2 = 1 T1 = 1, T2 = 1
13. Always-T2-taker T1 = 0, T2 = 1 T1 = 0, T2 = 1 T1 = 0, T2 = 1 T1 = 0, T2 = 1
14. [Type 14] T1 = 0, T2 = 1 T1 = 0, T2 = 1 T1 = 0, T2 = 1 T1 = 1, T2 = 1
15. [Type 15] T1 = 0, T2 = 1 T1 = 1, T2 = 1 T1 = 0, T2 = 1 T1 = 1, T2 = 1
16. Always-both-taker T1 = 1, T2 = 1 T1 = 1, T2 = 1 T1 = 1, T2 = 1 T1 = 1, T2 = 1

Table 5: Types of compliers admissible under Linear Extrapolation Approach

Define Uj = Fεj(εj) for j ∈ {1, 2}, so that U1, U2 ∼ Unif[0, 1]. Interpret Uj as a normalized

unobserved cost of treatment j. Next, I impose a linearity assumption on potential outcome

heterogeneity, and therefore permit limited pattern of treatment effect heterogeneity.

Assumption 8. (linearity in potential outcomes).

E[Y (0, 0) | U1 = p1, U2 = p2] = α̃00 + β̃00p1 + γ̃00p2,

E[Y (1, 0) | U1 = p1, U2 = p2] = α̃10 + β̃10p1 + γ̃10p2,

E[Y (0, 1) | U1 = p1, U2 = p2] = α̃01 + β̃01p1 + γ̃01p2,

E[Y (1, 1) | U1 = p1, U2 = p2] = α̃11 + β̃11p1 + γ̃11p2.

Assumption 8 allows for heterogeneous treatment effects that vary linearly in (U1, U2). It

nests homogeneous treatment effects as special case, when all slopes are zero.

4.2 Estimation Steps

The estimation follows a standard MTE procedure, extended to joint choice over two

treatments. First estimate the propensity scores p̂1, p̂2 by estimating the following with
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linear regression and predicting the treatment take-up.

T1 = θ10 + θ11Z1 + θ12Z2 + θ13Z1Z2,

T2 = θ20 + θ21Z1 + θ22Z2 + θ23Z1Z2.

Next, define the average outcome conditional on the treatment take-up as

AO(t1, t2) ≡ E[Y | T1 = t1, T2 = t2].

Under the assumptions on the choice model, Assumption 8, and Uj ∼ Unif[0, 1], the following

equalities hold:

AO(0, 0) = E[Y (0, 0) | p1 ≤ U1 ≤ 1, p2 ≤ U2 ≤ 1] = α00 + β00p1 + γ00p2,

AO(1, 0) = E[Y (1, 0) | 0 ≤ U1 ≤ p1, p2 ≤ U2 ≤ 1] = α10 + β10p1 + γ10p2,

AO(0, 1) = E[Y (0, 1) | p1 ≤ U1 ≤ 1, 0 ≤ U2 ≤ p2] = α01 + β01p1 + γ01p2,

AO(1, 1) = E[Y (1, 1) | 0 ≤ U1 ≤ p1, 0 ≤ U2 ≤ p2] = α11 + β11p1 + γ11p2.

Then the parameters (αtt′ , βtt′ , γtt′) can be estimated by regressing Y on p̂1 and p̂2 using

observations in each treatment pair (T1 = t1, T2 = t2). The following relationships map the

estimated (αtt′ , βtt′ , γtt′) to the parameters in the linear potential outcome functions:

∂2{(1− p1)(1− p2)AO(0, 0)}
∂(1− p1) ∂(1− p2)

= E[Y (0, 0) | U1 = p1, U2 = p2] = α̃00 + β̃00p1 + γ̃00p2,

∂2{p1(1− p2)AO(1, 0)}
∂p1 ∂(1− p2)

= E[Y (1, 0) | U1 = p1, U2 = p2] = α̃10 + β̃10p1 + γ̃10p2,

∂2{(1− p1)p2AO(0, 1)}
∂(1− p1) ∂p2

= E[Y (0, 1) | U1 = p1, U2 = p2] = α̃01 + β̃01p1 + γ̃01p2,

∂2{p1p2AO(1, 1)}
∂p1 ∂p2

= E[Y (1, 1) | U1 = p1, U2 = p2] = α̃11 + β̃11p1 + γ̃11p2.

Evaluating these derivatives yields the mapping from (α, β, γ) to (α̃, β̃, γ̃):

21



α̃00 = α00 − β00 − γ00, β̃00 = 2β00, γ̃00 = 2γ00,

α̃10 = α10 − γ10, β̃10 = 2β10, γ̃10 = 2γ10,

α̃01 = α01 − β01, β̃01 = 2β01, γ̃01 = 2γ01,

α̃11 = α11, β̃11 = 2β11, γ̃11 = 2γ11.

Finally, the marginal treatment effects (MTE1,MTE2), the marginal combined effect

(MTE3), and marginal treatment complementarity (MTEc) are derived by taking differ-

ences between these linear potential outcomes:

MTE1(p1, p2) ≡ E[Y (1, 0) | U1 = p1, U2 = p2]− E[Y (0, 0) | U1 = p1, U2 = p2],

MTE2(p1, p2) ≡ E[Y (0, 1) | U1 = p1, U2 = p2]− E[Y (0, 0) | U1 = p1, U2 = p2],

MTE3(p1, p2) ≡ E[Y (1, 1) | U1 = p1, U2 = p2]− E[Y (0, 0) | U1 = p1, U2 = p2],

MTEc(p1, p2) ≡ E[Y (1, 1) | U1 = p1, U2 = p2]− E[Y (1, 0) | U1 = p1, U2 = p2]

− E[Y (0, 1) | U1 = p1, U2 = p2] + E[Y (0, 0) | U1 = p1, U2 = p2].

Average treatment effects follow by integrating these objects over the desired range of

(U1, U2). To obtain an average treatment effect for receiving the first treatment, integrate

MTE1(p1, p2) over [0, 1]× [0, 1]. To obtain an average treatment complementarity effect for

the full population, integrate MTEc(p1, p2) over [0, 1]× [0, 1].

4.3 Simulation

This subsection evaluates how the proposed method performs relative to 2SLS and the

reduced form using simulated data. I consider two latent subpopulations—Group 1 and

Group 2—that are unobserved to the econometrician and differ in treatment effects. The

population is split evenly between the two groups. In both groups, treatment take-up follows

the same choice model:

T1 = 1{Z1 + Z1Z2 − ε1 > 0.5},

T2 = 1{Z2 + Z1Z2 − ε2 > 0.5}.

Group 1 has a higher mean for ε1 (higher resistance) and is therefore less likely to take up

T1. For Group 1, ε1 ∼ N (1, 1); for Group 2, ε1 ∼ N (0, 1). On the other hand, ε2 ∼ N (0, 1)
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for both groups. Outcomes are determined by the following data generation process:

Y = 1 · T1 + 2 · T2 + 0 · (T1 × T2) + ηY for group 1,

Y = 2 · T1 + 2 · T2 + 0 · (T1 × T2) + ηY for group 2.

where ηY ∼ N (0, 1) for both groups. This data generating process reflects a Roy model

argument: Group 2 has a higher treatment effect for the first treatment and therefore a

lower resistance to select it. I simulate N = 100,000 observations for 1,000 replications and

report the mean estimate with the standard deviations across replications in parentheses. I

compare 2SLS, the reduced form, and the linear extrapolation method.

Table 6: Simulation results

Truth 2SLS Reduced Form Linear Extrapolation

First treatment effect 1.5 1.670 (0.047) 0.504 (0.014) 1.481 (0.045)
Second treatment effect 2.0 2.035 (0.033) 0.766 (0.014) 2.000 (0.027)
Complementarity 0.0 -0.183 (0.063) 0.916 (0.019) -0.018 (0.049)
Constant 0.028 (0.020) 0.959 (0.010)

The figure below illustrates how the linear extrapolation method estimates the potential

outcome function. Based on the data generating process described above, I plot the true

average potential outcome for each of the sixteen complier types in the left panel. I plot four

different planes—one plane for potential outcome of each of the four treatment statuses.

These appear as step functions, since each complier type includes varying proportion of

individuals from Group 2. The linear extrapolation approach approximates these potential

outcomes with a plane, using observed outcomes across combinations of treatment take-

up and instrument assignments. Treatment effects conditional on a given resistance level

can then be obtained by taking differences in heights between the treated planes and the

untreated plane at the bottom, while treatment complementarity can be obtained by taking

differences across all four planes. Average treatment effects, reported in Table 6, follow by

integrating these differences over the support of [0, 1]× [0, 1].
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Figure 1: True potential outcomes (left) and extrapolated potential outcomes (right)

4.4 2SLS—Diagnostics and Practical Measures

Depending on the empirical setting, researchers may reasonably doubt that the assump-

tions required for the linear extrapolation method hold. When these assumptions are vio-

lated, the linear extrapolation method offers no guarantee of outperforming 2SLS.

In such cases, 2SLS remains the most accessible and widely used estimator. However, it

becomes essential to demonstrate why the resulting estimates can still be considered cred-

ible and why potential bias from treatment effect heterogeneity is unlikely to be severe.

Researchers can draw on the first-stage diagnostics presented in Section 3.3 to assess the

possibility of contamination bias in 2SLS, and complement this with the diagnostics intro-

duced in this section.

This subsection provides two complementary diagnostics for that purpose. The first

examines how to detect unobserved heterogeneity in potential outcomes—the central threat

to 2SLS validity—by comparing outcome means among individuals with identical treatment

take-up but different instrument assignments. The second explores how covariates correlated

with treatment effect heterogeneity can be leveraged to reduce bias in 2SLS estimation.

This part echoes Blandhol et al. (2022) that the regression specification should be fully

saturated.

4.4.1 Testing Potential Outcome Heterogeneity

A key threat to the validity of 2SLS is the presence of unobserved treatment effect hetero-

geneity. When treatment effects differ across complier types, 2SLS may give biased estimates

depending on the composition of compliers, as discussed in Proposition 1. Detecting such
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heterogeneity can help researchers to assess whether 2SLS provides a credible estimate.

A simple diagnostic exploits the implication that, under homogeneous potential outcomes,

individuals with the same realized treatment status (T1, T2) should have identical expected

outcomes regardless of their instrument assignment (Z1, Z2). Any systematic difference in

mean outcomes across instrument values—within the same treatment cell—implies that po-

tential outcomes vary across complier groups, indicating unobserved heterogeneity in treat-

ment effects. For each treatment combination (t1, t2), researchers can test

H0 : E[Y | T1 = t1, T2 = t2, Z1 = z1, Z2 = z2] = E[Y | T1 = t1, T2 = t2, Z1 = z′1, Z2 = z′2]

for all (z1, z2) and (z′1, z
′
2). Rejecting H0 indicates the presence of unobserved heterogeneity

in potential outcomes, and hence in treatment effects.

For instance, if the empirical setting admits the sixteen complier types in Table 5, testing

whether

H0 : E[Y | T1 = 1, T2 = 0, Z1 = 1, Z2 = 0] = E[Y | T1 = 1, T2 = 0, Z1 = 0, Z2 = 0]

is equivalent to comparing

H0 : E[Y (1, 0) | Complier type ∈ {7, 8, 9, 10, 11, 12}] = E[Y (1, 0) | Complier type ∈ {10, 11, 12}].

A rejection of this equality suggests that potential outcome Y(1,0) (and therefore treatment

effects) differ across complier types, undermining the validity of 2SLS estimates.

4.4.2 Controlling for Covariates

If part of the treatment effect heterogeneity can be explained by observed characteristics

X, conditioning on X may reduce bias in 2SLS estimates. However, even when X captures

some of the variation in treatment effects, a simple linear inclusion (without saturating the

specification) does little to improve 2SLS performance, consistent with findings in Blandhol

et al. (2022). To illustrate this, I use the same data-generating process as in Section 4.3.

I introduce a binary covariate X taking value 1 for 30% of individuals in Group 1 and

70% in Group 2. This covariate is correlated with both complier type—captured by dif-

ferent means of ε across groups in the T1 choice equation—and underlying treatment effect

heterogeneity.

I estimate two 2SLS specifications. The first specification linearly includes X as an
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exogenous control variable, using Z1, Z2, and (Z1 × Z2) as instruments:

Y = β0 + β1T1 + β2T2 + βc(T1 × T2) +X + ε.

The second specification fully interacts the treatment variables with X, allowing treatment

effects to vary by the covariate. It uses Z1, Z2, (Z1 × Z2), Z1 ·X, Z2 ·X, and (Z1 × Z2) ·X
as instruments:

Y = β0 + (β1 + β′
1X)T1 + (β2 + β′

2X)T2 + (βc + β′
cX)(T1 × T2) +X + ε,

I simulate N = 100,000 observations for 1,000 replications to examine how controlling for

X—linearly or through saturation—affects 2SLS estimates. Table 7 reports mean estimates

with standard deviations in parentheses.

Table 7: Simulation results

Truth 2SLS-not using X 2SLS-linear inclusion of X 2SLS-saturated

β1 1.3 1.66629 (0.048) 1.66636 (0.048) 1.45010 (0.079)
β2 2.0 2.03193 (0.035) 2.03188 (0.035) 2.01968(0.048)
βc 0.0 -0.17749 (0.066) -0.17751 (0.066) -0.15904 (0.102)
β1 + β′

1 1.7 1.83018 (0.061)
β2 + β′

2 2.0 2.03268 (0.052)
βc + β′

c 0.0 -0.13995 (0.086)

The results indicate that although 2SLS still fails to recover the true estimand for treat-

ment complementarity, the bias diminishes when the covariate X captures relevant variation

in treatment effect heterogeneity. This improvement, however, occurs only under a fully sat-

urated specification; linear inclusion of X in the 2SLS estimation does not reduce bias.

5 Empirical Application

I apply the framework developed in the previous sections to the randomized controlled

trial of Angelucci and Bennett (2024). The study cross-randomizes pharmacotherapy and

livelihoods assistance among about 1,000 adults with depression, finding that the combined

treatment substantially reduces depression severity, whereas pharmacotherapy alone has a

weaker and less persistent effect.

Yijt = β1(PCj ·Dt) + β2(LAj ·Dt) + β3(PC/LAj ·Dt)

+ β4(PCj · At) + β5(LAj · At) + β6(PC/LAj · At) +X ′
ijtβ7 + ϵijt,

(8)
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The authors estimate a reduced-form regression (8), where Yijt denotes standardized mea-

sure of depression severity (PHQ-9), PCj denotes assignment to pharmacotherapy only, LAj

denotes assignment to livelihoods assistance only, and PC/LAj denotes assignment to both

treatments. The variables Dt and At indicate the “during” and “after” phases of the in-

tervention, respectively. The vector Xijt includes stratification indicators (as randomization

was stratified by district and terciles of a locality socioeconomic index) and the baseline

outcome of depression severity. Standard errors are clustered at the village level.

This reduced-form specification is valid for studying instrument complementarity—how

assignment to combined treatments affects outcomes—but it can conflate differences in com-

pliance with true interaction effects in treatment responses. The study reports substan-

tial noncompliance: forty-five percent of participants complied with pharmacotherapy and

sixty-eight percent with livelihoods assistance. With the unequal compliance and the first-

stage patterns reported in Table 4, tests such as H0 : β1 + β2 = β3 (during phase) and

H0 : β4 + β5 = β6 (after phase) can be challenging to interpret.

This section uses the replication data from Angelucci and Bennett (2024) to exam-

ine whether the data can be pushed further to estimate treatment complementarity itself

(H0 : E[∆1]+E[∆2] = E[∆3]), rather than relying solely on reduced-form evidence. A natural

extension is to estimate 2SLS, which is not reported in the original study. However, compar-

ing 2SLS coefficients is generally invalid for learning about complementarity if underlying

treatment effect heterogeneity exists, as shown in Section 3.1. As discussed in Proposi-

tion 6, different coefficients in the first-stage regressions of this study imply that each 2SLS

coefficient averages over distinct complier groups. Consequently, differences across 2SLS co-

efficients may reflect variation in complier composition and treatment effect heterogeneity

rather than genuine complementarity.

To assess whether such heterogeneity in treatment effects is present and potentially biases

the 2SLS estimates, I apply the diagnostic from Section 4.4.1 to the replication data. The

diagnostic compares mean outcomes among individuals with the same realized treatment

status but different instrument assignments, thereby testing for potential outcome hetero-

geneity across complier groups. Specifically, I compare E[Y | T1 = 1, T2 = 0, Z1 = 1, Z2 = 0]

with E[Y | T1 = 1, T2 = 0, Z1 = 1, Z2 = 1], and, by the same logic, E[Y | T1 = 0, T2 = 1, Z1 =

0, Z2 = 1] with E[Y | T1 = 0, T2 = 1, Z1 = 1, Z2 = 1]. Pooling during and after periods,

equality of means is rejected at the five percent level in both comparisons. When analyzed

separately, equality is not rejected during the intervention but is rejected afterward. This

pattern indicates potential-outcome heterogeneity across complier types and cautions against

interpreting 2SLS coefficient differences as evidence of treatment complementarity.
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Given evidence from both the first-stage regressions and the diagnostic tests, I next im-

plement the linear extrapolation method from Section 4 to study whether there is evidence

of interaction in treatment effects. Two challenges complicate this application. The first is

one-sided compliance, which is typical in randomized trials. Among those who take both

treatments, there is no instrument-driven variation in propensities because the only individ-

uals who take both are those assigned to both; the design rules out always-takers, limiting

support for (p̂1, p̂2) among those receiving both treatments. The second challenge is the

small sample size, which limits statistical power.

To address the first challenge and increase variation in propensity scores, I proceed in two

steps. First, I estimate treatment propensities using interactions between the instruments

and baseline covariates Xijt, including baseline depression severity and all stratification in-

dicators. Second, in the regressions of outcomes on the estimated propensities within each

treatment cell, I include only baseline depression as a covariate. This strategy expands vari-

ation in the estimated propensities sufficiently to identify the planes of potential outcomes,

and it remains valid under the assumption that the excluded covariates (the stratification

indicators) affect outcomes only through treatment.

For comparison, I report estimates for the during period. Table 8 presents the reduced-

form, 2SLS, and linear extrapolation estimates computed from the replication data. Standard

errors for the linear extrapolation are obtained by clustered bootstrap with 1,000 replica-

tions.

Table 8: Empirical application: Angelucci and Bennett (2024)
During period only

Reduced Form Two Stage Least Squares Linear Extrapolation

First treatment (PC) effect -0.151 (0.081) -0.317 (0.173) 0.233 (0.390)
Second treatment (LA) effect -0.082 (0.085) -0.116 (0.120) -0.143 (0.123)
Complementarity -0.027 (0.125) -0.141 (0.378) -0.427 (1.123)

The linear extrapolation estimates exhibit large standard errors, limiting statistical sig-

nificance. Nevertheless, their pattern differs notably from both the reduced-form and 2SLS

results. During the intervention, the reduced-form estimates suggest little complementarity,

and the 2SLS estimates indicate a smaller interaction effect than the main pharmacotherapy

effect. By contrast, the linear extrapolation method yields estimates in which complemen-

tarity stands out relative to the individual treatment effects.

The second challenge—small sample size—further constrains inference. To gauge how
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large a sample would be needed to generate more precise evidence using the linear extrapo-

lation method, I conduct a simple scaling exercise. I increase the dataset by a factor of ten

and re-estimate the same models without clustering adjustments, to isolate the impact of

sample size. The dataset is scaled by cloning observations without adding noise. The results

underscore the empirical difficulty of detecting treatment complementarity: under imperfect

compliance, uncovering interaction effects requires substantially larger samples than those

typically sufficient for reduced-form analysis.

Table 9: Empirical application: Angelucci and Bennett (2024)
During period only

Reduced Form
(N×10)

Two Stage Least Squares
(N×10)

Linear Extrapolation
(N×10)

First treatment (PC) effect -0.151 (0.020) -0.317 (0.042) 0.528 (0.144)
Second treatment (LA) effect -0.082 (0.020) -0.116 (0.028) -0.160 (0.029)
Complementarity -0.027 (0.030) -0.141 (0.091) -0.953 (0.413)

6 Conclusion

This paper studies how to estimate complementarities between two treatments when as-

signment is not fully random. I show that the standard approach, two stage least squares

with instruments for each treatment and their interaction, generally fails to recover causal

interaction effects unless one of two strong conditions holds. First, treatment effects must

be homogeneous. Second, instruments must shift only their own treatments and must gen-

erate a common complier population across coefficients. These conditions imply first stage

restrictions that are testable and rarely satisfied in practice. This clarifies that learning

about causal interactions requires attention not only to usual instrument validity but also

to complier composition that underlies each estimand.

I develop an alternative strategy that extends the marginal treatment effects framework

to two joint treatments. The method models potential outcomes as linear in unobserved

resistance to each treatment and accommodates a richer, more realistic set of complier types

than the set that delivers a clean 2SLS interpretation. In simulations where 2SLS is biased,

the linear–extrapolation approach recovers the interaction effect more accurately when its

identifying assumptions hold.

I apply these ideas to Angelucci and Bennett (2024), a randomized trial with substantial

noncompliance that cross randomizes pharmacotherapy and livelihoods assistance. The first

stage patterns suggest that the assumptions needed for interpretable coefficient comparisons
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are unlikely to hold. Reduced form tests detect instrument complementarity but cannot

separate compliance differences from treatment interactions. Two stage least squares does

not resolve this problem because coefficients represent different complier groups. The linear

extrapolation approach, implemented with propensities enriched by interactions between in-

struments and baseline covariates to resolve limited support in propensities, yields estimates

that map more directly to average interaction effects. However, the limitation is that the

standard error is too large compared to the reduced form or 2SLS estimators.

The results in this paper offer some guidance for applied work. First, report first stage

regressions that can speak to the complier restrictions: cross coefficients should be near zero if

each instrument shifts only its targeted treatment, and relevant first stage coefficients should

be equal if one wishes to sum or compare 2SLS coefficients. Second, avoid interpreting sums

or comparisons of 2SLS or reduced form coefficients unless the evidence supports a common

complier population. Third, if 2SLS must be used, saturate covariates to mitigate bias when

observables are informative about treatment effect heterogeneity. When assumptions are met

and broader complier sets are plausible, linear extrapolation could be one alternative.

The linear extrapolation approach has limits. It assumes linear potential outcomes and

independence across unobserved resistance terms, and it requires support in the estimated

propensities—often thin in randomized trials with one–sided compliance. Flexible first–stage

specifications with baseline covariates can expand support, but validity requires that some

covariates affect outcomes only through treatment. The empirical application also suggests

that larger samples may be needed for precise inference.

There are two directions for future research. One is to study combinations of other quasi

experimental strategies, such as difference in differences and regression discontinuity, in order

to clarify what additional assumptions are needed to interpret interaction estimates as causal

when treatment effects are heterogeneous. The other is to extend the analysis to continuous

instruments or continuous treatments.
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Appendix

A Proofs

A.1 Proof of Proposition 1

Rewrite3 equation (3) as

Y = β0 + β1T1 + β2T2 + βcT3 + ϵ,

where T3 = T1 × T2. The 2SLS estimator is characterized by the moment conditions

E[ϵ] = E[ϵZ1] = E[ϵZ2] = E[ϵZ3] = 0,

with Z3 = Z1 × Z2.

Define the treatment effects as

∆1 = Y (1, 0)− Y (0, 0),

∆2 = Y (0, 1)− Y (0, 0),

∆c =
(
Y (1, 1)− Y (1, 0)

)
−
(
Y (0, 1)− Y (0, 0)

)
,

where ∆c denotes the complementarity effect.

Using the potential treatment notation introduced in the main text, the error term in

equation (3) can be expressed as

ϵ = (Y (0, 0)− β0) + (∆1 − β1)T1(0, 0) + (∆2 − β2)T2(0, 0) + (∆c − βc)T3(0, 0)

+ Z1

[
(∆1 − β1)

(
T1(1, 0)− T1(0, 0)

)
+ (∆2 − β2)

(
T2(1, 0)− T2(0, 0)

)
+ (∆c − βc)

(
T3(1, 0)− T3(0, 0)

)]
+ Z2

[
(∆1 − β1)

(
T1(0, 1)− T1(0, 0)

)
+ (∆2 − β2)

(
T2(0, 1)− T2(0, 0)

)
+ (∆c − βc)

(
T3(0, 1)− T3(0, 0)

)]
+ Z3

[
(∆1 − β1)

(
T1(1, 1)− T1(1, 0)− T1(0, 1) + T1(0, 0)

)
+ (∆2 − β2)

(
T2(1, 1)− T2(1, 0)− T2(0, 1) + T2(0, 0)

)
+ (∆c − βc)

(
T3(1, 1)− T3(1, 0)− T3(0, 1) + T3(0, 0)

)]
.

Substitute this expression into the moment conditions. By Assumption 2, (Y (·), T1(·), T2(·)) ⊥
(Z1, Z2) and Z1 ⊥ Z2. Using these assumptions as well as Z2

1 = Z1 and Z2
2 = Z2 since each

instrument are binary indicators, the moment conditions can be written as

3This section extends Kirkeboen, Leuven and Mogstad (2016) and Behaghel, Crepon and Gurgand (2013)
to the case of treatment complementarities.
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 1 0 E[Z2]

0 1 E[Z1]

1− E[Z1] 1− E[Z2] 1− E[Z3]


condition 1

condition 2

condition 3

 = 0. (9)

The determinant of the first matrix equals (1 − E[Z1])(1 − E[Z2]), which is nonzero as

long as neither Z1 nor Z2 is almost surely equal to 1.

The three conditions are:

E
[
(∆1 − β1)

(
T1(1, 0)− T1(0, 0)

)
+ (∆2 − β2)

(
T2(1, 0)− T2(0, 0)

)
+ (∆c − βc)

(
T3(1, 0)− T3(0, 0)

)]
= 0,

E
[
(∆1 − β1)

(
T1(0, 1)− T1(0, 0)

)
+ (∆2 − β2)

(
T2(0, 1)− T2(0, 0)

)
+ (∆c − βc)

(
T3(0, 1)− T3(0, 0)

)]
= 0,

E
[
(∆1 − β1)

(
T1(1, 1)− T1(1, 0)− T1(0, 1) + T1(0, 0)

)
+ (∆2 − β2)

(
T2(1, 1)− T2(1, 0)− T2(0, 1) + T2(0, 0)

)
+ (∆c − βc)

(
T3(1, 1)− T3(1, 0)− T3(0, 1) + T3(0, 0)

)]
= 0.

Rearranging these conditions with respect to (β1, β2, βc) yields the 2SLS estimand. De-

note

∆∆T1 ≡ T1(1, 1)− T1(1, 0)− T1(0, 1) + T1(0, 0)

∆∆T2 ≡ T2(1, 1)− T2(1, 0)− T2(0, 1) + T2(0, 0)

∆∆T3 ≡ T3(1, 1)− T3(1, 0)− T3(0, 1) + T3(0, 0)

Then the 2SLS estimand isβ1

β2

βc

 =

E[T1(1, 0)− T1(0, 0)] E[T2(1, 0)− T2(0, 0)] E[T3(1, 0)− T3(0, 0)]

E[T1(0, 1)− T1(0, 0)] E[T2(0, 1)− T2(0, 0)] E[T3(0, 1)− T3(0, 0)]

E[∆∆T1] E[∆∆T2] E[∆∆T3]


−1

×

E
[
∆1(T1(1, 0)− T1(0, 0)) + ∆2(T2(1, 0)− T2(0, 0)) + ∆c(T3(1, 0)− T3(0, 0))

]
E
[
∆1(T1(0, 1)− T1(0, 0)) + ∆2(T2(0, 1)− T2(0, 0)) + ∆c(T3(0, 1)− T3(0, 0))

]
E
[
∆1(∆∆T1) + ∆2(∆∆T2) + ∆c(∆∆T3)

]
 .

Therefore, in general, the weights attached to ∆2 and ∆c in the 2SLS estimand of β1

are nonzero, because they are determined by the inverse matrix multiplied to the second

matrix. Invoking Assumption 4 (Monotonicity) does not remove these terms; it only ensures

nonnegativity of T1(1, 0) − T1(0, 0), T2(0, 1) − T2(0, 0), and T3(1, 1) − T3(0, 0). Hence, un-

der Assumptions 1–4, the 2SLS estimand is generally a linear combination of ∆1, ∆2, and
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∆c.

A.1.1 Proof of weight averaging to 1 or 0 in Proposition 1

Starting from the expression obtained in Appendix A.1, the 2SLS estimand satisfies

β1

β2

βc

 =

E[a1] E[a2] E[a3]
E[a4] E[a5] E[a6]
E[a7] E[a8] E[a9]


−1

×

E
[
∆1[a1] + ∆2[a2] + ∆c[a3]

]
E
[
∆1[a4] + ∆2[a5] + ∆c[a6]

]
E
[
∆1[a7] + ∆2[a8] + ∆c[a9]

]
 ,

Then, denoting A =

a1 a2 a3

a4 a5 a6

a7 a8 a9

,

β1 =
(
1 0 0

)
(EA)−1

[
E[∆1A

1

0

0

] + E[∆2A

0

1

0

] + E[∆cA

0

0

1

]
]

Therefore, weight attached to ∆1 for expression of β1 is equal to

w1
1 =

(
1 0 0

)
(EA)−1A

1

0

0



Then, Ew1
1 =

(
1 0 0

)
(EA)−1EA

1

0

0

 = 1.

It can be shown similarly for the other weights as well.
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A.2 Proof of Proposition 2

Starting from the expression obtained in Appendix A.1, the 2SLS estimand satisfies

β1

β2

βc

 =

E[T1(1, 0)− T1(0, 0)] E[T2(1, 0)− T2(0, 0)] E[T3(1, 0)− T3(0, 0)]

E[T1(0, 1)− T1(0, 0)] E[T2(0, 1)− T2(0, 0)] E[T3(0, 1)− T3(0, 0)]

E[∆∆T1] E[∆∆T2] E[∆∆T3]


−1

×

E
[
∆1{T1(1, 0)− T1(0, 0)}+∆2{T2(1, 0)− T2(0, 0)}+∆c{T3(1, 0)− T3(0, 0)}

]
E
[
∆1{T1(0, 1)− T1(0, 0)}+∆2{T2(0, 1)− T2(0, 0)}+∆c{T3(0, 1)− T3(0, 0)}

]
E
[
∆1(∆∆T1) + ∆2(∆∆T2) + ∆c(∆∆T3)

]
 ,

where

∆∆Tk ≡ Tk(1, 1)− Tk(1, 0)− Tk(0, 1) + Tk(0, 0), k ∈ {1, 2, 3}, T3 = T1 × T2.

Under Assumption 5 (No cross effects),

T1(Z1, 1) = T1(Z1, 0), T2(1, Z2) = T2(0, Z2),

and

T3(1, 0) = T3(0, 0), T3(0, 1) = T3(0, 0).

Hence,

T1(0, 1)− T1(0, 0) = 0, T2(1, 0)− T2(0, 0) = 0, ∆∆T1 = 0, ∆∆T2 = 0.

Moreover,

T1(1, 0)− T1(0, 0) ≥ 0 T2(0, 1)− T2(0, 0) ≥ 0

∆∆T3 = T3(1, 1)− T3(1, 0)− T3(0, 1) + T3(0, 0) = T3(1, 1)− T3(0, 0) ≥ 0

by Assumption 4 (Monotonicity) and Assumption 5 (No cross effects). Therefore the coeffi-

cient matrix becomes diagonal:

β1

β2

βc

 =

E[T1(1, 0)− T1(0, 0)] 0 0

0 E[T2(0, 1)− T2(0, 0)] 0

0 0 E[∆∆T3]


−1E

[
∆1{T1(1, 0)− T1(0, 0)}

]
E
[
∆2{T2(0, 1)− T2(0, 0)}

]
E
[
∆c∆∆T3

]
 .

Applying Assumption 4 and 5 to all possible 256 potential–treatment patterns restricts
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admissible patterns to the seven types in Proposition 2. Among these,

T1(1, 0)− T1(0, 0) = 1 iff type ∈ {T1-complier, Dutiful complier},

T2(0, 1)− T2(0, 0) = 1 iff type ∈ {T2-complier, Dutiful complier},

∆∆T3 = 1 iff type = Dutiful complier.

Thus,

β1 = E[∆1 |T1 complier, Dutiful complier]

β2 = E[∆2 |T2 complier, Dutiful complier]

βc = E[∆c |Dutiful complier]

A.3 Proof of Proposition 3

Rewrite equation (6) as

Y = γ0 + γ1Z1 + γ2Z2 + γcZ3 + ϵ,

where Z3 = Z1 × Z2. Also denote T3 = T1 × T2 as in A.1.

Then,

Y = Y (0, 0) + ∆1T1 +∆2T2 +∆cT3

where each T1, T2, T3 can be expressed using potential choice introduced in 3.1:

T1 = T1(0, 0) + (T1(1, 0)− T1(0, 0))Z1 + (T1(0, 1)− T1(0, 0))Z2

+ (T1(1, 1)− T1(1, 0)− T1(0, 1) + T1(0, 0))Z3

T2 = T2(0, 0) + (T2(1, 0)− T2(0, 0))Z1 + (T2(0, 1)− T2(0, 0))Z2

+ (T2(1, 1)− T2(1, 0)− T2(0, 1) + T2(0, 0))Z3

T3 = T3(0, 0) + (T3(1, 0)− T3(0, 0))Z1 + (T3(0, 1)− T3(0, 0))Z2

+ (T3(1, 1)− T3(1, 0)− T3(0, 1) + T3(0, 0))Z3

Combining the four expressions above, we can connect the reduced-form coefficients to po-
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tential outcome and individual treatment effects.

E[Y |Z1, Z2, Z3] = γ0 + γ1Z1 + γ2Z2 + γcZ1Z2

= E[Y (0, 0) + ∆1T1(0, 0) + ∆2T2(0, 0) + ∆cT3(0, 0)]

+ Z1E[∆1(T1(1, 0)− T1(0, 0)) + ∆2(T2(1, 0)− T2(0, 0)) + ∆c(T3(1, 0)− T3(0, 0))]

+ Z2E[∆1(T1(0, 1)− T1(0, 0)) + ∆2(T2(0, 1)− T2(0, 0)) + ∆c(T3(0, 1)− T3(0, 0))]

+ Z3E[∆1(T1(1, 1)− T1(1, 0)− T1(0, 1) + T1(0, 0))

+ ∆2(T2(1, 1)− T2(1, 0)− T2(0, 1) + T2(0, 0))

+ ∆c(T3(1, 1)− T3(1, 0)− T3(0, 1) + T3(0, 0))]

Thus

γ1 = E
[
∆1(T1(1, 0)− T1(0, 0)) + ∆2(T2(1, 0)− T2(0, 0)) + ∆c(T3(1, 0)− T3(0, 0))

]
,

γ2 = E
[
∆1(T1(0, 1)− T1(0, 0)) + ∆2(T2(0, 1)− T2(0, 0)) + ∆c(T3(0, 1)− T3(0, 0))

]
,

γc = E
[
∆1∆∆T1 +∆2∆∆T2 +∆c∆∆T3

]
,

where for k ∈ {1, 2, 3},

∆∆Tk ≡ Tk(1, 1)− Tk(1, 0)− Tk(0, 1) + Tk(0, 0).

These expressions show that each reduced-form coefficient is a linear combination of the

three individual-level effects (∆1,∆2,∆c) with weights determined by potential treatment

choices. Assumption 4 (Monotonicity) implies nonnegativity of certain differences (T1(1, 0)−
T1(0, 0) ≥ 0, T2(0, 1) − T2(0, 0) ≥ 0, T3(1, 1) − T3(0, 0) ≥ 0), but it does not set the cross

terms to zero. Hence, under Assumptions 1–4, γ1, γ2, γc generally mix ∆1,∆2,∆c. Therefore,

reduced-form estimates may not be informative if researchers’ interests are in ∆. Additional

restrictions on potential choices—such as Assumption 5 (No cross effects)—are required to

purge these cross terms.

A.4 Proof of Proposition 4

Impose Assumptions 4 (Monotonicity) and 5 (No cross effects) on the expressions derived

in Proposition 3 and in Appendix A.3. Under these restrictions, all cross-effects vanish and
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only own-instrument effects remain:

γ1 = E
[
∆1{T1(1, 0)− T1(0, 0)}

]
,

γ2 = E
[
∆2{T2(0, 1)− T2(0, 0)}

]
,

γc = E
[
∆c∆∆T3

]
,

where ∆∆T3 ≡ T3(1, 1) − T3(1, 0) − T3(0, 1) + T3(0, 0). Applying these assumptions to the

full set of 44 = 256 potential-treatment patterns restricts admissible types to the seven listed

in Table 2. Among these types,

T1(1, 0)− T1(0, 0) = 1 ⇐⇒ type ∈ {T1-complier, Dutiful complier},

T2(0, 1)− T2(0, 0) = 1 ⇐⇒ type ∈ {T2-complier, Dutiful complier},

∆∆T3 = 1 ⇐⇒ type = Dutiful complier.

Because each difference indicator equals one only for the corresponding complier group,

γ1 = E[∆1 · 1{T1-complier or Dutiful complier}]

= Pr(T1-complier or Dutiful complier) · E[∆1 | T1-complier or Dutiful complier] ,

γ2 = E[∆2 · 1{T2-complier or Dutiful complier}]

= Pr(T2-complier or Dutiful complier) · E[∆2 | T2-complier or Dutiful complier] ,

γc = E[∆c · 1{Dutiful complier}]

= Pr(Dutiful complier) · E[∆c | Dutiful complier] .

This establishes Proposition 4.

A.5 Proof of Proposition 5 and 6

The first stage for 2SLS estimation is:

T1 = α0
1 + α1

1Z1 + α2
1Z2 + αc

1(Z1 × Z2) + η1

T2 = α0
2 + α1

2Z1 + α2
2Z2 + αc

2(Z1 × Z2) + η2

(T1 × T2) = α0
c + α1

cZ1 + α2
cZ2 + αc

c(Z1 × Z2) + ηc

Let Z3 ≡ Z1Z2 and T3 ≡ T1T2. Taking expectation of each treatment take-up which can
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be corresponded to the potential choice and also invoking Assumption 2:

E[T1 | Z1, Z2, Z3] = E[T1(0, 0)] + E[(T1(1, 0)− T1(0, 0))]Z1 + E[(T1(0, 1)− T1(0, 0))]Z2

+ E[(T1(1, 1)− T1(1, 0)− T1(0, 1) + T1(0, 0))]Z3

E[T2 | Z1, Z2, Z3] = E[T2(0, 0)] + E[(T2(1, 0)− T2(0, 0))]Z1 + E[(T2(0, 1)− T2(0, 0))]Z2

+ E[(T2(1, 1)− T2(1, 0)− T2(0, 1) + T2(0, 0))]Z3

E[T3 | Z1, Z2, Z3] = E[T3(0, 0)] + E[(T3(1, 0)− T3(0, 0))]Z1 + E[(T3(0, 1)− T3(0, 0))]Z2

+ E[(T3(1, 1)− T3(1, 0)− T3(0, 1) + T3(0, 0))]Z3

Therefore,

α1
1 = E

[
T1(1, 0)− T1(0, 0)

]
, α2

1 = E
[
T1(0, 1)− T1(0, 0)

]
, αc

1 = E
[
∆∆T1

]
,

α1
2 = E

[
T2(1, 0)− T2(0, 0)

]
, α2

2 = E
[
T2(0, 1)− T2(0, 0)

]
, αc

2 = E
[
∆∆T2

]
,

α1
c = E

[
T3(1, 0)− T3(0, 0)

]
, α2

c = E
[
T3(0, 1)− T3(0, 0)

]
, αc

c = E
[
∆∆T3

]
,

where ∆∆Tk ≡ Tk(1, 1)− Tk(1, 0)− Tk(0, 1) + Tk(0, 0).

(i) Proposition 5. Impose Assumption 5 (No cross effects):

T1(Z1, 1) = T1(Z1, 0), T2(1, Z2) = T2(0, Z2), T3(1, 0) = T3(0, 0), T3(0, 1) = T3(0, 0).

Then

α2
1 = αc

1 = α1
2 = αc

2 = α1
c = α2

c = 0.

Moreover, by Assumption 4 (Monotonicity),

T1(1, 0)− T1(0, 0), T2(0, 1)− T2(0, 0), ∆∆T3 = T3(1, 1)− T3(0, 0) are all in {0, 1}.

Under Assumptions 4–5, the admissible potential–choice patterns reduce to the seven types

in Table 2. In that list,

T1(1, 0)− T1(0, 0) = 1{T1-complier or Dutiful complier},

T2(0, 1)− T2(0, 0) = 1{T2-complier or Dutiful complier},

∆∆T3 = 1{Dutiful complier}.
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Taking expectations yields

α1
1 = Pr(T1-complier or Dutiful complier),

α2
2 = Pr(T2-complier or Dutiful complier),

αc
c = Pr(Dutiful complier),

with all cross coefficients equal to zero, as claimed in Proposition 5.

(ii) Proposition 6. Now add the further restriction that there are no T1-only or T2-only

compliers (i.e., rule out types “T1-complier” and “T2-complier” in Table 2). Under this

restriction,

T1(1, 0)− T1(0, 0) = 1{Dutiful complier}, T2(0, 1)− T2(0, 0) = 1{Dutiful complier},

and still ∆∆T3 = 1{Dutiful complier} from above. Therefore,

α1
1 = α2

2 = αc
c = Pr(Dutiful complier),

and the remaining coefficients are zero. Hence the instrument’s effect on T1, T2, and T1T2 is

driven by the same complier group (Dutiful compliers), establishing Proposition 6.
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